O.P.Code: 20HS0812

н X

ä

H.T.No.	
---------	--

Ī

			 		 1.	 	
. 110	n n	n 1	 	 	 1		
			 	 	 10 A	 	
		_		 	 	 	

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)			
	B.Tech. II Year I Semester Supplementary Examinations Jun MANAGERIAL ECONOMICS AND FINANCIAL ANALY (Common to CSE, CSIT & CE)		ly-20	25
Ti		ax. Ma	rbe	60
	(Answer all Five Units $5 \times 12 = 60$ Marks)	an. Mic	11 69.	00
	UNIT-I			
		001		
	÷ 1 0	CO1	L2	6M
	1 economics in business decision making.	604		1 -
	b Analyze the significance of managerial economics in decision-making?	CO1	L3	6M
	OR			
	a What do you mean by elasticity of demand?	CO1	L1	6M
	b State the different types of elasticity of demand.	CO 1	L2	6M
	UNIT-II			
	a Define production function. Explain production function with one	CO2	L2	6M
	3 variable input			
	b Evaluate the Cobb Douglas production function.	CO2	L4	6M
	OR			
	A Firm has a fixed cost of Rs 50000/- selling price per unit Rs50/- and	CO2	L4	12M
	variable cost per unit Rs 25/- present level of production is 3500/- units			
	i) Determine BEP in terms of volume and also sales value.			
	(i) Calculate the margin of safety.			
	iii) What is the change in BEP and margin of safety if Fixed cost			
	increases from Rs50000/- to Rs60000/-			
	UNIT-III			
	a Write short notes on skimming strategy.	CO3	L2	6M
	b Distinguish between monopoly and perfect competition.	CO3	L2	6M
	OR			
	a Define oligopoly and its features.	CO3	L1	6M
	b What do you understand by economic liberalization?	CO3	L2	6M
	UNIT-IV			
	Define canital hudgeting Explain the various methods of Canital	CO4	L2	12M
	Budgeting.			
	OR			
	a What are advantages and disadvantages of Pay back Method.	CO 4	L4	6M
		CO4	L5	6M
	the annual cash inflow for the next 4 years are Rs 25000 .What is the			
	Payback period for the Project A & B?			
	UNIT-V			
	a What is meant by Patio analysis?	CO5	L1	6M
	b Explain briefly about various types of ratios.	CO5	L1	6M
	OR			UITE
		CO5	L5	6M
1	0 periods			VIL
		CO5	L1	6M
	*** END ***			

5.8

÷2

R20

H.T.No.

	S	IDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: H	PUTTU	R	
	B	(AUTONOMOUS) Tech. II Year I Semester Supplementary Examinations Ju	ne/Ju	lv-20	25
		HEAT & MASS TRANSFER		-, -,	
		(Agricultural Engineering)			
lime	:: 3		lax. Ma	arks:	60
		(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I			
1	a	What is Fourier's law of conduction? State the assumption and essential feature of it.	CO1	L1	6M
	b	Define the following terms	CO1	L1	6M
		i)Thermal Conductivity ii) Thermal Resistance	001		UIVI
		OR			
2		Derive the general heat conduction equation in Cylindrical coordinate	CO1	L3	12M
		UNIT-II	001	LU	
3		An exterior wall of a house may be approximated by a 0.1 m layer of	CO2	L4	1234
5		common brick (K=0.7 w/m \circ C) followed by a 0.04 m layer of gypsum	002	L4	12M
		plaster (K=0.48w/m °C). What thickness of loosely packed rock wool			
		insulation (K= 0.065 w/moC) should be added to reduce the heat loss			
		trough the wall by 80 percent.			
		OR			
4	я	What is lumped system analysis? Derive the expression for it.	CO2	L2	6M
		A 50 cm x 50 cm copper slab 6.25 mm thick has a uniform temperature	CO2	L2 L4	6M
		of 300°C. Its temperature is suddenly lowered to 36°C. Calculate the	002	1.14	UIVI
		time required for the plate to reach the temperature of 108. Take $\rho =$			
		9000 kg/m3, c = 0.38 kJ/kg °C, k = 370 W/m °C and h = 90 W/m2 °C.			
		UNIT-III			
5	a		CON	Т 1	<u>AN</u>
5	а	Explain hydrodynamic and thermal boundary layer with reference to flow over flat plate.	COS	L1	6M
	h	What is convective heat transfer? Distinguish between free and forced	CO3	L1	6M
	v	convection.	COS	LI	UIVI
		OR			
6	я	Differentiate between laminar and Turbulent flow.	CO3	L3	6M
U		A horizontal plate measuring $1.5 \text{ m x} 1.1 \text{ m}$ and at $215 ^{\circ}\text{C}$, taking	CO3	L3 L4	6M
		upward is placed in still air at 25 °C. Calculate the heat loss by natural	COS	1.4	UIVI
		convection. The convective film coefficient for free convection is given			
		by the following empirical relation $h = 3.05(Tf) 1/4$ W/m2 °C. where Tf			
		is the mean film temperature in degree Kelvin.			
		UNIT-IV			
7			CO4	тэ	103.0
/		Explain briefly the various regimes of saturated pool boiling with diagram.	CO4	L3	12M
		OR			
8	9	Distinguish between Boiling and Condensation.	CO 4	Τ1	<u>(</u>]]
0		What is black body? How is differ from a gray body?	CO4	L1	6M
	U		CO4	L1	6M
•		UNIT-V	a a -		
9	a	How heat exchangers are classified based on direction of fluid motion.	CO5	L1	12M
		Explain with neat diagram.			
10		OR Define Fielde law Familain haisfla	60 -	T 4	4 4 7 7
10		Define Fick's law. Explain briefly.	CO5	L1	12M
		*** FNID ***			

- 4

H.	T.	N	C

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations June/July-2025

COMPUTER ORGANIZATION & ARCHITECTURE

(Common to CSM, CAD, CAI, CCC, CIC, CSE & CSIT)

Tin	ne	3 Hours	Max.	Mark	s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
1		UNIT-I	CO1	T 1	
1		List the types of Buses and Give the function of each Bus. Give the Structure of BUS Interface with various devices in computer.	CO1 CO1	L1 L2	6M 6M
	U	OR	COI		UIVI
2	a	Discuss any two instructions in each group of Data Transfer, Data	CO2	L6	6M
		Manipulation and Program Control Instructions with example.			
	b	Discuss the Following Instructions with example	CO2	L6	6M
		LD, XCH, OUT, POP, DEC, ADDC			
		UNIT-II			
3		Subtract 1101 and -1001 using 2's complement subtractions.	CO2	L1	6M
	b	Discuss the ASCII Code for the representation of Characters. OR	CO2	L6	6M
4		Develop flowchart for the Multiplication of floating-point number and	CO3	L5	12M
-		illustrate with an example.	005	LU	12111
		UNIT-III			
5	a	Explain the symbols used in Register Transfer Language.	CO3	L2	6M
	b		CO3	L4	6M
		OR			
6		Draw 4 bit combinational circuit shifter.	CO3	L1	6M
	b	Differentiate between Hardwired Control and Micro-programmed	CO3	L3	6M
		control.			
7		UNIT-IV Evaloin how momented with CDU with discover	CO3	L5	12M
7		Explain how memories connected with CPU with diagram. OR	COS	L2	12111
8	a	Define track and sector. Analyze the importance of auxiliary memory?	CO 4	L1	6M
-		What is Virtual Memory? Discuss how address mapping using pages.	CO 4	L1	6M
		UNIT-V			
9	a	Anticipate three types of hazards (conflicts) in instruction pipelining.	CO5	L4	6M
		Define hardware interlock, operand forwarding and delayed load.	CO5	L1	6M
		OR			
10	a	Explain the two ways to mitigate the high latency in ring network with	CO 6	L2	8M
	Ŀ	neat sketch.	COC	T <i>E</i>	ЛЪЛ
	D	Explain in detail about the snoopy cache. *** END ***	CO 6	L5	4M

O.P.Code: 20CE0104

1

- 2

R20

	H .	T.	.N	0	•
--	------------	----	----	---	---

p.	
----	--

				(AUTONOM	-			
				Supplement VEYING & G (Civil Engine			•	
T 11	me	: 3 Hours	(A news	r all Five Units	$5 \times 12 = 60$ Marks)	Max.	Marl	ks: 60
			(Allswe					
					1-1	001	т.	
1			n the principles of		••• •	CO1	L2	6M
	b	Define survey	ing and brief about	-	visions of surveying	CO1	L2	6M
2		W/h at any the	1:00	OI		001	тa	1034
2		what are the c	lifferent tape corre			CO1	L2	12M
				UNIT	[-1]			
3			otes on errors in lev	0		CO2	L2	6M
	b	Discuss the ef	fects of curvature a		•	CO2	L2	6M
				OI				
4			indirect methods	ontour? Write about any	CO2	L1	12M	
		two methods.		12				
				UNIT	<u>'-III</u>			
5		With neat sket	tch, write about the	parts of a trans	sit theodolite	CO3	L1	12M
				OI	2			
6		Determine the	R.L of the top of a	a temple from the	he following data.	CO3	L3	12M
		Station A and	B are in line with	the top of the te	emple			
		Inst Station	Reading on BM(m)	Vertical Angle	R.L of BM			
		А	1.085	10°48′	R.L of BM = 150.000m			
		В	1.265	7°12*	AB=50 m			
				1	f			
				UNIT				
7		With abotab	welain in datail an		f curve setting by offset	CO4	L2	12M
1		from the tange		y one method o	I curve setting by onset	CO4		1211
		from the tange	the method	OF)			
8		Describe with	skatch the method		nple circular curve by	CO4	L2	12M
o			lection angle method	÷	ipie circular curve by	004	LZ	
		Kalikille Suel	lection angle metho	17 -	n x/			
0		F 1 • • • 1				COF	T 4	103.5
9		Explain with s	sketch the principle			CO5	L1	12M
10		Deserit '41	alestala di C	OF International	-	COF	ТA	1437
10				uamental meas	surement of angles and	005	L2	12M
		distances by to	Dial station.	444 TATES	* * *			
				*** END				

8.5

1.2

R20	
-----	--

H.T.N	0.
--------------	----

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)							
]	B.Tech. II Year I Semester Supplementary Examinations June/July-2025 ANALOG ELECTRONIC CIRCUITS						
		(Electrical & Electronics Engineering)					
Tim	le:	3 Hours	Max.	Mark	s: 60		
		(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I					
1		Compare positive feedback and negative feedback.	CO1	L2	6M		
	b	Give the classification of basic amplifiers.	CO2	L2	6M		
		OR					
2		Show that how a negative feedback reduces gain of an amplifier.	CO1	L1	6M		
	b	Derive the expression for De-sensitivity (D).	CO 1	L3	6M		
		UNIT-II					
3	a	Define Oscillator and explain its principle of operation.	CO1	L1	6M		
	b	Interpret the various types of oscillators.	CO1	L3	6M		
		OR					
4	a	Draw the circuit diagram of Colpitts oscillator using BJT and derive the	CO1	L1	6M		
		expression for frequency of oscillations.					
	b	Compare piezoelectric effect and inverse piezoelectric effect with a neat	CO6	L2	6M		
		diagram.					
		UNIT-III					
5	a	Explain the basic information and pin configuration of an op-amp.	CO1	L2	6M		
	b	What are the four different configurations of differential amplifier?	CO1	L1	6M		
		OR					
6		What is voltage follower? What are its features and applications?	CO1	L1	6M		
	b	Explain the term slew rate and illustrate the importance in op-amp circuits.	CO3	L2	6M		
		UNIT-IV					
7	a	Design and explain the operation of non-inverting summing amplifier.	CO3	L3	6M		
	b	Explain the operation of differentiator using op-amp with a neat circuit	CO5	L2	6M		
		diagram.					
		OR					
8	a	Explain the operation of monostable multivibrator using op-amp ,with a neat circuit and its waveforms.	CO2	L2	6M		
	b	Derive the equation for pulse width of the monostable multivibrator	CO4	L3	6M		
		using op-amp.					
9	•	L	CO1	L1	6M		
7		Draw the frequency response of filters. Explain the first order high pass butter worth filter with a neat circuit	CO1	L1 L2	6M		
	υ	diagram.	004	ک نے ا	UIVI		
		OR					
10	я	Explain in detail about R-2R DAC with a neat diagram.	CO3	L2	6M		
IV		Discuss any four specifications of the DAC.	CO1	L2	6M		

O.P.Code: 20CS0505

H	.т.	No.
---	-----	-----

 	10 U	 	 	

大街、東部省の「東京などの」の「「「「「「

100

の目前の中の日の時に同時時代の時間

新たに

いたちの

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)						
	B.Tech. II Year I Semester Supplementary Examinations June/July-2025 DATABASE MANAGEMENT SYSTEMS						
Tin	(Common to CSIT, CSE, CSM, CAD & CAI) (Answer all Five Units 5 x 12 = 60 Marks)	Max.	Mark	cs: 60			
1	a Explain the Architecture of Database with a neat diagram.	CO1 CO1	L2 L2	6M 6M			
2		CO2	L2	12M			
3	1 1	CO1 CO1	L3 L2	6M 6M			
4		CO1 CO1	L1 L2	6M 6M			
5	a Discuss about preserving Decomposition.	CO3 CO3	L2 L1	6M 6M			
6	a What is the use of Fourth normal form? Explain by listing some of its major advantages.	CO3	L2	6M			
7	UNIT-IV	CO3	L4 L2	6M 6M			
/		CO5	L2 L2	6M			
8	Explain ACID properties and illustrate them through examples.	CO 4	L2	12M			
9	1	CO5 CO5	L2 L2	6M 6M			
10	0	CO6 CO6	L1 L2	6M 6M			

6).P.	Code: 20CS0513 R20 H.T.No.							
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)								
	E	B.Tech. II Year I Semester Supplementary Examinations COMPUTER NETWORKS (Common to CCC & CIC)	June/Ju	ly-20)25				
Tin	1e:	3 Hours (Answer all Five Units 5 x 12 = 60 Marks)	Max. Ma	arks:	60				
		UNIT-I	~~~		2				
]		Define computer networks, Specify Computer Network Types.	C01	L1	6M				
	ľ	b Illustrate what are the data rate limits in computer networks.	CO1	L3	6M				
	. т	OR	CO1	1.2	103.6				
2	2 I	Explain in detail about TCP/IP Network model.	C01	L2	12M				
		UNIT-II							
3		What is framing? Explain with frame architecture.	CO2	L2	6M				
	t	• Explain Cyclic Redundancy check method used for error detection.	CO2	L2	6M				
4		Explain about the Elementary data link protocols.	CO2	L2	12M				
		UN MT-III							
5	5 a	Explain Flooding concept.	CO3	L2	6M				
	b	• Sketch and explain in detail about IPV4protocol.	CO3	L3	6M				
		OR							
6	a	Explain distance vector routing algorithm.	CO3	L2	6M				
	b	Write about BGP- Exterior Gateway routing protocol.	CO3	L4	6M				
		UNI T-IV							
7	' Il	llustrate the different Primitives used for transport service. Elaborate them	n. CO4	L3	12M				
		OR							
8	a	List and define the elements of transport layer.	CO4	L1	6M				
	b	Describe about TCP connection Establishment.	CO4	L2	6 M				
		UNIT-V							
9	a	Explain about dynamic webpages.	CO5	L2	6M				
	b	Name the basic functions of E-Mail.	CO5	L1	6M				
		OR							
1() a	Describe SMTP protocol.	CO5	L2	6M				
	b	Summarize in detail about cookies.	CO5	L6	6M				
		Ŷ							

H.T.No.

*** END ***

の美国となったいのであるないとないであるないである

「日本のでは、日本という

「おいた」にないい

<u> </u>					<u> </u>			
0	.P.	Code: 20EE0202 R20 H.T.No.						
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)								
	В	.Tech. II Year I Semester Supplementary Examinations Ju	ne/Ju	ly-20	25			
		ELECTRICAL MACHINES – I (Electrical & Electronics Engineering)						
Ti	me	: 3 Hours	Max.	Marl	cs: 60			
		(Answer all Five Units 5 x 12 = 60 Marks)						
1	a	Explain the Types of DC Generators.	CO 1	L2	6M			
	b	A 8 pole dc shunt generator with 778 wave connected armature	CO1	L3	6M			
		conductors and running at 500 rpm supplies a load of 12.5 ohm resistance at terminal voltage of 50v. The armature resistance is 0.24	12					
		ohm and the field resistance is 250 ohm. Find the armature current, the						
		induced e.m.f and the flux per pole.						
2		Explain the uses of compensating winding.	CO1	L3	6M			
	b	A 400V 1000A lap wound de machines has 10 poles and 860 armatures	CO1	L3	6 M			
		conductors. calculate the number of conductors in the pole face to give full compensation if the pole face covers 70% pole span						
		UNIT-II						
3		Explain the no-load characteristics for self-excited generator. Explain the no-load characteristics for separately-excited generator	CO2 CO2	L2 L2	6M 6M			
		OR	02		UIVI			
4		Explain the uses of equalizer bar. Discuss about cross connection of field winding of DC generator	CO3	L3	6M			
	U	UNIT-III	CO3	L3	6M			
5		What is the significance of Back E.M.F	CO 4	L2	6M			
	b	A 440 v shunt motor has armature resistance of 0.8 ohm and field resistance of 200. Determine the back emf when giving an output of	CO 4	L3	6M			
		7.46kW at 80% efficiency.						
6	9	OR Explain the armature voltage control method for the Speed control of a	CO4	L2	6M			
v		DC Motor	004	114	UIVL			
	b	A 200 V dc shunt motor running at 1000 rpm takes an armature current	CO4	L3	6M			
		of 17.5A.it is required to reduce the speed to 600 rpm. What must be the value of resistance to be inserted in the armature circuit if the original						
		armature resistance is 0.4 ohm. Take armature current to be constant						
		during this process.						
7	a	Explain brake test of DC machine.	CO5	L4	6M			
	b	Explain swinburne's test of DC machine and state the advantage and disadvantages.	CO5	L4	6M			
		OR OR						
8		Explain Hopkinson's test for DC machine and state the merits and	CO5	L4	12M			
		demerits.						
9		Explain the torque- speed characteristics of PMBLDC motor.	CO6	L2	6M			
	b	Compare PMBLDC with DC motor	CO6	L2	6M			
10		Explain construction and working principles of Switched Reluctance	CO6	L4	12M			
		Motor(SRM). *** END ***						

Time: 3 Hours

R20

of Arth

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech. II Year I Semester Supplementary Examinations June/July-2025 SWITCHING THEORY AND LOGIC DESIGN

(Electronics and Communications Engineering)

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

me.		(Answer all Five Units $5 \times 12 = 60$ Marks)			
1	a	UNIT-I What are Universal Gates? Give their truth tables and Graphic symbols.	CO1 CO1	L1 L2	6M 6M
	b	List the different Boolean expressions for Two binary variables.	COI		UNI
		UK A	CO1	L3	6M
2	a	State and prove Consensus Theorem and Absorption Theorem of	COI	LU	01/1
	h	Boolean algebra. Identify the Dual of the following Boolean expressions. (i) AB'C+AB'D+A'B' (ii) A'B'C+ABC'+A'B'C'D.	CO1	L2	6M
		UNIT-II	CO5	L3	6M
3	a	Develop the logic diagram for the following Boolean function using	003	Ц3	UIVI
		NAND and NOR gates. Y=(AB'+A'B)(C+D').	CO1	L2	6M
	b	Explain the disadvantage of K-Map method of reducing a Boolean			
		function and how to overcome it. OR			
		Simplify the following expression using K-Map and realize with NAND	CO2	L4	6M
4	a	Simplify the following expression using R wap and roughly the following expression using R wap and roughly and NOR gates. $F = \pi M (1, 2, 3, 8, 9, 10, 11, 14)$. $\pi d (7, 15)$.			
		Explain the disadvantage of K-Map method of reducing a Boolean	CO1	L2	6M
	b	function and how to overcome it.			
		UNIT-III			
_		Explain a 2-bit Magnitude comparator and write down its design	CO3	L2	6M
5	a	Explain a 2-bit Magintude comparator and material of			
	Ŀ	procedure. Design & implement Full Adder using two half adders.	CO4	L3	6M
	D	OR •			<i>(</i>)
6		What is an encoder? Design an octal to binary encoder.	CO6	L3	6M
0	a b	Illustrate the following Boolean functions using decoder and OK gates.	CO5	L3	6M
	U	$F1(A,B,C,D)=\sum(2,4,7,9) F2(A,B,C,D)=\sum(10,13,14,15).$			
		UNIT-IV			
-		Derive the characteristic equations for D & T Flip-Flops.	CO2	L3	6M
7	a L	Derive the characteristic equations for D & T Flip-Flops.	CO2	L3	6M
	D	Derive the characteristic equations for 2 of a r			
0	•	Define a counter and design a 4-bit Ripple counter.	CO6	L1	6M
8	a h	Explain in brief about a 2-bit synchronous up-counter.	CO6	L2	6M
	U	UNIT-V			
		Illustrate the PLA for the following Boolean function.	CO5	L3	6M
9	a	(i) $F1 = \Sigma m(0,1,3,4)$ (ii) $F2 = \Sigma m(0,1,2,3,4,5)$.			
	1	(i) $F1 = \Sigma m(0,1,3,4)$ (ii) $F2 = \Sigma m(0,1,2,3,4,5)$. Explain in brief about Programmable Read Only Memory (PROM) with	n CO2	L2	6M
	D	e suitable example			
		a suitable example. OR			
47		Define Moore model Explain it with neat diagram.	CO1	L1	6M
10	-	The second for second to second the second of the second o	e CO3	L2	6M
	D	examples:			
		i) State diagram ii) State table iii) State assignment.			
		1) State diagram in State dolo			

O.P.Code: 20CS0506

÷ ,

۰.

R20

H.T.No

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)							
B.Tech. II Year I Semester Supplementary Examinations June/July-2025 OBJECT ORIENTED PROGRAMMING THROUGH JAVA							
Time	(Common to CSE, CSIT, CCC & CIC) 3 Hours	ax. Ma	rke	60			
Time:	(Answer all Five Units $5 \times 12 = 60$ Marks)	an. Ma	1 69.	00			
	UNIT-I						
1	a Define data type. Discuss the data types available in java.	CO1	L1	6M			
	b Develop a java program to read different data types using scanner.	CO1	L6	6M			
	OR						
2	a Define iteration statements.	CO1	L4	6M			
	b Explain about the Iteration statements.	CO1	L2	6M			
	UNIT-II						
3	a Define constructor. Classify the types of constructors in Java.	CO2	L1	6M			
	b Write a java program to illustrate constructor overloading.	CO2	L6	6M			
	OR						
4	a What is inheritance?	CO2	L1	6M			
	b Explain types of inheritances.	CO2	L2	6M			
	UNIT-III						
5	a Differentiate between checked and unchecked exceptions?	CO3	L4	6M			
	b Illustrate about try, catch, and throw statements using a java program.	CO3	L3	6M			
	OR						
6	a Define string? Write and explain string handling methods in java.	CO4	L1	6M			
	b Create a java program to check the given string is palindrome or not.	CO4	L6	6M			
	UNIT-IV						
7	Illustrate file handling using file class	CO4	L3	12M			
	OR						
8	a Analyze the following concepts with java programs.	CO6	L4	6M			
	i) Array list ii) Tree set iii) Linked hash map						
	b Apply the following interfaces with java programs.	CO3	L6	6M			
	i) The collection interface ii) The set iii) The map entry						
	UNIT-V						
9	Develop a java program to design simple registration page window using	CO5	L6	12M			
	AWT controls.						
	OR						
10	Explain the following methods in java.	CO5	L2	12M			
	a) Default method						
	b) Static method						
	c) For Each()method						
	*** END ***						

 ~ 2

÷.,

-	
PON	
N ₂ U	

H.T.No.

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR							
	(AUTONOMOUS) B.Tech. II Year I Semester Supplementary Examinations June/July-2025							
		PYTHON PROGRAMMING						
Tim	ie:	(Common to CSM, CAD & CAI) 3 Hours	Max.	Mark	s: 60			
		(Answer all Five Units 5 x 12 = 60 Marks)						
1	a	Elaborate on the concept of REPL in Python and its purpose. Explain how Python scripts are executed.	CO1	L2	6M			
	b	Describe sets and illustrate their operations comprehensively. OR	CO1	L3	6M			
2	a	Explain the variable and keywords with suitable examples.	CO1	L2	6M			
	b	Illustrate the Input and Output statements with examples.	CO1	L3	6M			
3	a	Elaborate on logical operators and illustrate their applications with examples.	CO2	L2	6M			
	b	Develop a Python program to swap two numbers with and without using temporary variables.	CO2	L3	6M			
		OR						
4	a	Rate the order of execution of different Expressions by evaluating them through the Python program.	CO2	L2	6M			
	b	Implement a Python program to generate the multiplication table based on user input.	CO2	L3	6M			
		UNIT-III						
5	a	Explain about Anonymous functions with examples.	CO3	L3	6M			
	b	Describe default arguments with a suitable program.	CO3	L3	6M			
		OR						
6		Illustrate the lambda function with an example.	CO3	L3	6M			
	b	Define variable-length arguments. Explain with an example.	CO3	L3	6M			
7	a	Analyze the term PIP. Explain installing packages via PIP.	CO4	L2	6M			
	b	Explain how the Modules are used in Python program with an example. OR	CO4	L3	6M			
8	a	Classify Errors and Exception Handling in Python programming.	CO4	L2	6M			
	b	Elaborate on the concept of user-defined exceptions and their use in error handling.	CO4	L3	6M			
		UNIT-V						
9	a	Describe how maps work in Python and their applications.	CO5	L2	6M			
	b	Explain the usage and significance of filters in Python programming. OR	CO5	L3	6M			
10	a	Express about mathematical functions in Python.	CO5	L2	6M			
	b	Showcase your understanding of GUI programming with an emphasis on rectangle creation.	CO5	L3	6M			
		*** END ***						

12 o

с),

R20		H.1
------------	--	-----

2	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR					
	(AUTONOMOUS) B.Tech. II Year I Semester Supplementary Examinations Ju	ne/Ju	lv-20	25		
	GENERATION OF ELECTRICAL POWER	•	5			
	(Electrical and Electronics Engineering)	on Ma	-1	60		
Time	: 3 Hours M (Answer all Five Units $5 \times 12 = 60$ Marks)	lax. Marks: 60				
1	Explain the function of the following in thermal power plant and explain	CO 1	L3	12M		
-	the principle of operation of each.	001	10			
	i) Super heater ii) Cooling tower iii)Boilers					
	OR					
2	a What are the differences between thermal and hydro power plant?	CO1	L1	6M		
	b What are the factors considered, while selecting the site for a Hydro	CO2	L2	6M		
	power station?					
	UNIT-II					
3	a Explain Nuclear chain Reaction.	CO3	L3	6M		
	b State the advantages and disadvantages of Nuclear power plant.	CO3	L2	6M		
	OR					
4	State the types of reactors used in nuclear power station. Explain about the	CO3	L3	12M		
	boiling water reactor.					
	UNIT-III					
5	a Explain the construction of Flat plate collectors with neat diagram.	CO4	L3	6M		
	b Describe the different types of wind mills.	CO 4	L2	6M		
	OR					
6	a What is the role and potential of wind energy? Explain in detail.	CO4	L2	6M		
	b What is the need for solar thermal energy storage?	CO 4	L1	6M		
_	UNIT-IV	GO -				
7	a How biomass conversion takes place?	CO5	L3	6M		
	b Explain the factors affecting bio-digestion of gas.	CO5	L3	6M		
0	OR	COF	т э	1014		
8	Draw schematic diagram of geothermal system and explain the working principle.	005	L3	12M		
	UNIT-V					
9	a What is load? Explain different types of loads.	CO6	L2	6M		
,	b The maximum demand of a consumer is 20 A at 220 V and his total	CO6	L2 L4	6M		
	energy consumption is 8760 kWh. If the energy is charged at the rate of	000		UIVI		
	20 paise per unit for 500 hours use of the maximum demand per annum					
	plus 10 paise per unit for additional units, calculate : (i) annual bill					
	(ii) equivalent flat rate.					
	OR					
10	a What is Tariff? What are the Desirable Characteristics of a Tariff?	CO 6	L3	6M		
	b What do you understand by 'Economics of power generation'?	CO 6	L2	6M		

0.	Р.С	Code: 20EC0404 R20 H.T.No.						
1.12	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR							
	D	(AUTONOMOUS)	no / Tur'	0005				
	в.	Tech. II Year I Semester Supplementary Examinations Jun SIGNALS, SYSTEMS AND RANDOM PROCESSES	ne/Ju	ly-2025				
		(Electronics and Communications Engineering)						
Tir	ne:	3 Hours	Max.	Marks:	60			
		(Answer all Five Units $5 \ge 12 = 60$ Marks) UNIT-1						
1	a	Define signal. Explain various elementary signals and indicate them	CO1	L2 6	M			
		graphically.	001		-			
	b	Sketch the following signals. (i) $x(t)=2 u(t+2)-2 u(t-3)$ ii) $x(t)=r(t)-r(t-1)-r(t-3)+r(t-4)$	CO1	L3 6	M			
		\mathbf{OR}						
2	a	Define the following Systems	CO2	L1 6	M			
		 (i) Linear and Non- Linear (ii) Time invariant and time variant. (iii) Static and dynamic (iv) Causal and Non-causal 						
	b	Find whether the following system is	CO2	L3 6	M			
		(i) Linear or Non-Linear ii) Static and dynamic.						
		$d^{3}y(t)/dt^{3}+2d^{2}y(t)/dt^{2}+4dy(t)/dt+3y^{2}(t)=x(t+1)$ UNIT-II						
3		Develop the Exponential Fourier Series for the given signal below	CO2	L3 12	2M			
		\mathbf{T}						
		-2π an 0 π 2n						
		OR						
4		List the properties of Continuous time Fourier transform.	CO2		M			
	b	State and prove the Linearity and Time Shifting properties of Continuous time Fourier transform.	CO2	L3 6	M			
		UNIT-III						
5	a	State and Prove the Following Properties of LTI System.	CO2	L3 6	M			
	h	(i) Distributive Property ii) Associative Property Derive the Transfer function of LTI system	CO2	L3 6	M			
	U	OR	002	L5 0	IVI			
6		Demonstrate the Procedure to perform convolution graphically.	CO4		M			
	b	Examine the convolution of the following signals by graphical method. $x(t)=e^{-3t}u(t)$ and $h(t)=u(t+3)$	CO4	L3 6	M			
		UNIT-IV						
7		State and prove the Time Reversal Property of Laplace transform	CO2		M			
	b	Derive the Laplace transform of any three standard signals.	CO3	L3 6	M			
8	a	OR Explain the concept of Joint probability.	CO6	L2 6	M			
0		Explain the concept of Conditional probability	CO6		M			
_		UNIT-V	~ ~ (
9	a	Define and Differentiate the Distribution and Density functions of a Random Process.	CO6	L2 6	M			
	b	Define and explain Stationary and Statistical Independence of Random process. OR	CO6	L2 6	M			
10		Explain the concept of cross power density spectrum. List the properties of	CO6	L2 12	2M			
		cross power spectral density. *** END ***		7				

ς.

зų,

R20

H.T.No.	
---------	--

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)						
	B.Tech. II Year I Semester Supplementary Examinations June/July-2025 PRINCIPLES OF OPERATING SYSTEMS						
Tin	Time: 3 Hours (Computer Science & Information Technology)			Mark	s: 60		
	(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I						
1	a	Discuss about User and Operating System Interface.	CO1	L2	6M		
	b	Write a short note on System programs.	CO1	L2	6M		
		OR					
2	a	What is System Call? Explain different types of system calls.	CO1	L2	8M		
	b	Discuss about the functionality of system boot with respect to operating	CO1	L2	4M		
		system.					
		UNIT-II					
3	a	Explain in detail about operations of process.	CO2	L3	6M		
	b	What is CPU scheduling? Explain types of Scheduling and Scheduling	CO2	L3	6M		
		Criteria in detail.					
		OR					
4	a	Discuss about Multilevel Queue Scheduling and First come First Serve	CO3	L2	6M		
		with example.					
	b	What are Threads? Write about Types of Threads.	CO3	L1	6M		
		UNIT-III					
5		Explain in detail Classical problems of synchronization.	CO3	L3	6M		
	b	What is Dead lock? Explain the advantages of dead lock.	CO3	L3	6M		
		OR					
6		Explain in detail about producer consumer problem.	CO3	L3	6M		
	b	Write the properties and limitations of semaphores.	CO3	L1	6M		
		UNIT-IV					
7	a	Explain any two page replacement algorithms.	CO4	L5	6M		
	b	Explain the concept of segmentation in detail.	CO4	L3	6M		
		OR					
8	a	Explain Structure of page table.	CO4	L3	6M		
	b	Explain the concept of Thrashing.	CO4	L3	6M		
		UNIT-V					
9	a	Explain stable storage management.	CO5	L3	6M		
	b	Explain about disk structure.	CO5	L3	6M		
		OR					
10	a	Explain File access methods in detail.	CO5	L3	6M		
	b	What is Directory? Explain Directory implementation.	CO5	L3	6M		
		*** END ***					

6

 ~ 10

1

R20

		SIDDHARTH INSTITUTE	E OF ENGINE (AUTONON		OLOGY:	: PUTI	ſUR	
	B. ?	Fech. II Year I Semeste		itary Examination	ions Jun	e/Jul	y-202	25
Time	: 3	(Common t		CAD, CAI, CCC &		x. Ma	rks: (50
				$1155 \times 12 = 60 \text{ Mar}$				
1	a	Define System call. List diffe	erent types of sy	stem calls.		CO1	L1	6M
	b	List and discuss the different	functions of an	operating system.		CO1	L2	6M
)R		~ ~ .		
2		Discuss the services provided	• •	g system.		CO1	L2	8M
	D	Write notes on system progra		TT TT		CO 1	L1	4M
2				IT-II		CO 2	т 1	
3		List the advantages of ULT a		with proper definiti	on	CO2 CO2	L1 L1	6M 6M
	D	Name and draw five different	-)R	011.	02	LI	OIVI
4	я	Give below Processes table,			e for the	CO2	L2	6M
•	••	algorithms:First Come First S			• 101 1110			UIVI
			rrival Time	Burst Time				
		P1	0	7				
		P2	2	5				
		P3	4	2				
		P4	5 🤇	4				
		P5	3	2				
	b	What is threading and multitl				CO2	L1	6 M
5	•	Write short notes on Dead Lo	the second se	T-III		CO3	L3	6M
5	a h	Describe in detail deadlock p		105.		CO3	L3 L3	6M
	U	pesentee in detail deadlock p		DR		005	115	UNI
6	a	What is critical section proble				CO 4	L1	6M
		What is Monitor? Explain wi	-	1		CO 4		6M
		10 T	UNI	T-IV				
7	a	What is disk scheduling. Lis			gorithms	CO5	L4	6M
		with their comparisons.		-	•			
	b	Define Memory manageme	ent. What is	Swapping? Expla	ain with	CO5	L2	6 M
		structure.						
0)R	• •.1	GO		01
8	a	List different types of pag	ge replacement	algorithms. Expl	ain with	C05	L2	6M
	Ь	examples. Classify demand paging with	evample			CO5	L4	6M
	U	Crussity domaid paging with		IT-V		005	1.4	0141
9	9	Enlist different types of direc	L			CO6	L1	6M
7		Classify access matrix and its	•	n.		CO6	L1 L4	6M
		Clubbilly access matrix and he	-)R		0.00	1	UITE
10	a	Discuss the various file alloca				CO6	L2	6M
	b	Define Authentication. explai	in types of authoria	entications.		CO6	L1	6M
			*** EN	D ***				

Time: 3 Hours

R20

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations June/July-2025 FLUID MECHANICS

(Civil Engineering)

Max. Marks: 60

6M

(Answer all Five Units $5 \times 12 = 60$ Marks)

- 1 a Explain the phenomenon of capillarity. Obtain an expression for CO1 L2 6M capillary rise of a liquid.
 - **b** Calculate the capillary rise in a glass tube of 2.5mm diameter when **CO1 L3** immersedvertically in a) water & b) mercury. Take surface tension is 0.0725 N/m^2 for water And 0.52 N/m^2 for mercury in contact with air. The specific gravity for mercury is given as 13.6 & angle of contact is 130°

OR

2		State Pascal's law and Derive pressure variation in liquid at rest. Define the following terms : i) Atmospheric Pressure, ii) Absolute Pressure, iii) Gauge pressure, iv) Vacuum pressure	CO1 CO1	L2 L2	6M 6M
3			CO2	L1	12M
4		Explain about the stream function with definition in Two-dimensional flow and polar co-ordinates. Also write its properties.	CO2	L1	12M
5		Derive the Expression for velocity measurement by Pitot tube and pitot static tube.	CO4	L3	12M
6	•	Derive an expression for the discharge over a rectangular notch.	CO 4	L2	6M
6		A rectangular notch 2m wide as a constant head of 500mm. Find the	CO4	L2 L2	6M
	b	discharge over the notch, if co-efficient of discharge for the notch is 0.62 and $g = 9.81$?	04	14	UIVI
7		The rate of flow water through a horizontal pipe of 0. 25m m ³ /s. The dia of the pipe which is 200mm is suddenly enlarged to 400mm. the pressure intensity in the smaller pipe is 11.772 N/cm ² . Determine i) Loss of head due to sudden enlargement ii) Pressure intensity in the large pipe iii) power lost due to enlargement?	CO5	L3	12M
0			CO5	L2	12M
8		Briefly explain about Hardy cross method.	05		12111
9		Derive the expression for resistance of smooth pipes.	CO6	L3	6M
	b	Derive the expression for resistance of rough pipes.	CO6	L3	6M
		OR			
10		Water is flowing through a rough pipe of 500mm diameter and length 4000m at the rate of 0.5 m ³ /s. find the power required to maintain this flow. Take average height of roughness as $k= 0.4$ mm. *** END ***	CO6	L3	12M

Time: 3 Hours

R20

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations June/July-2025 THERMAL ENGINEERING

(Mechanical Engineering)

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- a A two stage air compressor compresses air from 1 bar and 20°C to 42 CO1 L3 6M bar. If the law of compression is pv^{1.3} = constant and the inter cooling is perfect. Find per kg of air (i) The work done in compression.
 b Derive the relation for work done on single stage regimeenting CO1 L2 CO1
 - **b** Derive the relation for work done on single stage reciprocating **CO1 L2 6M** compressor without Clearance.

OR

An air compressor cylinder has 150mm bore and 150mm stroke and the CO1 L3 12M clearance is 15%. It operates between 1 bar, 270C and 5 bar. Take polytropic exponent n=1.3 forcompression and expansion processes. Find (i). Cylinder volume at the various salient points of in cycle. (ii). Flow rate in m3/min at 720 rpm. (iii). Volumetric efficiency.

UNIT-II

3 Derive the expression for the efficiency of Brayton cycle in terms cycle CO2 L3 12M parameters.

OR

4 In a Gas turbine plant, the air is compressed in a single stage compressor CO2 L3 12M from 1 bar to 9 bar and from an initial temperature of 300K. The same air is then heated to a temperature of 800K and then expanded in the turbine. The air is then reheated to a temperature of 800K and then expanded in the second turbine. Find the maximum power that can be obtained from the installation, if the mass of air circulated per second is 2Kg. Take Cp=1 KJ/Kg.

UNIT-III

5	a	Explain about super saturated flow in nozzles with neat sketch. And	CO3	L2	6 M
	b	represent in H-S diagram. What are the effects of friction on flow through nozzle?	CO3	L2	6M
		OR			
6		Classify the non-mixing type condensers and explain them in brief.	CO3	L2	12M
7		Explain Compounding and its types with appropriate sketches.	CO 4	L2	12M
		OR			
8	Explain Nozzle Governing and Bypass Governing in steam turbines with neat sketches.				12M
		UNIT-V			
9		Compare 2-stroke engine with 4-stroke engine.	CO5	L3	12M
		OR			
10		Briefly explain the method of Measuring the following (i) Fuel Consumption. (ii) Air intake (iii) Exhaust gas composition (iv) Brake power (v) Indicated power (vi) Friction power *** END ***	CO5	L3	12M

.

 $\mathbb{Z}_{\mathbf{x}}$

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)	:: PU T	TUR	
	B.Tech. II Year I Semester Supplementary Examinations Ju ELECTRO MAGNETIC FIELDS	ne/Ju	ly-20	25
Tim	ne: 3 Hours (Electrical & Electronics Engineering) (Answer all Five Units 5 x 12 = 60 Marks)	Max.	Marl	ks: 60
	UNIT-I			
1	i).Express vector B in cartesian system. B= $(10/r) a_r + r \cos \theta a_{\theta} + a_{\phi}$. ii). From the above expression evaluate B at (-3,4,0). OR	CO1	L1	12M
2	Find the gradient of the following scalar fields: i) $V = e^{-z} \sin 2x \cosh y$, ii) $U = r^2 z \cos \phi$ and iii) $W = 10r \sin^2 \theta \cos \phi$ UNIT-II	CO1	L3	12M
3	 a State and prove Gauss's law and write limitations of Gauss's law. b Determine the Electric filed intensity at P(-0.2, 0, -2.3) m due to a point chargeof 5 nc at Q (0.2,0.1, -2.5) m in air. 	CO2 CO2	L2 L3	6M 6M
	OR	~~~		
4	 a Explain the concept of divergence theorem. b Given that A= 30 e^{-r} ar⁻² z az in the cylindrical co-ordinates. Evaluate both sides of the divergence theorem for the volume enclosed by r=2, z=0 and Z=5. 	CO2 CO2	L2 L3	4M 8M
	UNIT-III			
5	Explain the boundary conditions of two perfect dielectrics materials. OR	CO3	L2	12M
6	In a a parallel plate capacitor $A=100 \text{ Cm}^2$, $d=4 \text{ mm}$ and $\mathcal{E}_r=10$. i). Evaluate the capacitance. ii). By connecting 30 V battery across the Capacitors, Calculate E, D, Q	CO3	L4	12M
	 and the total stored energy. iii).If the source is disconnected and the dielectric is carefully withdrawn from between. Again, Calculate E, D, Q and the energy. iv). Potential Difference between the plates. 			
7	UNIT-IV	CO4	ТЭ	
7	 a State and explain ampere's circuital law. b Find the flux passing the portion of the plane Ø=π/4 defined by 0.01<r<0.05 0<z<2="" 2.5="" a="" along="" and="" axis="" az="" current="" direction="" filament="" free="" in="" is="" li="" m="" m.="" of="" space.<="" the="" z=""> </r<0.05>	CO4 CO4	L2 L3	6M 6M
	OR			
8	 a Explain the Stokes theorem. b Evaluate both sides of the stokes theorem for the filed H=6xy ax -3y² ay A/m and the rectangular path around the region 2<x<5, -1<y<1,="" a<sub="" be="" direction="" ds="" let="" of="" positive="" the="" z="0.">z.</x<5,> 	CO4 CO4	L2 L4	4M 8M
	UNIT-V			
9	Explain faradays law of electromagnetic induction and there from derive maxwell's equation in differential and integral form?	CO5	L4	12M
10	What is displacement current? Explain physical significance of displacement current?	CO5	L2	12M
	*** END ***			

O.P.Code: 20HS0864

34

**

R20

H.T.No.

.

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)			
	B. 1	Fech. II Year I Semester Supplementary Examinations Jur HUMAN VAUES AND PROFESSIONAL ETHICS	ne/Jul	y-202	25
		(Common to CSIT, CSE,CSM, CAD, CAI, CCC & CIC)	N	N.F. 1	
Tim	le:	3 Hours (Answer all Five Units $5 \times 12 = 60$ Marks)	Max.]	Mark	s: 60
		UNIT-I			
1	a	Explain why the study of human values is essential to engineers. List a	CO1	L2	6M
		few important human values and sub-values.			
	b	What is work ethic? Discuss briefly the various elements of it.	CO1	L2	6M
2		OR	CO1	1.2	<u>AM</u>
2	a	Write short notes on the following. (i) Respect for others (ii) Living peacefully (iii) Caring (iv) Sharing	CO1	L2	6M
	h	Explain the concept of spirituality in work place.	CO1	L2	6M
	U	UNIT-II	001		UNI
3	я	Write short notes on 'senses or dimensions of engineering ethics.	CO2	L1	6M
5		Write down the various approaches to engineering ethics.	CO2	L1	6M
	~	OR			
4	a	Mention the uses of ethical theories?	CO2	L1	6M
	b	Write down the attributes of a profession?	CO2	L1	6M
		UNIT-III			
5	a	What are the various roles and functions of codes of ethics?	CO3	L1	6M
	b	Explain about conscientiousness.	CO3	L1	6M
		OR			
6	a	Define the term standardization. What are the facilities provided by standards?	CO3	L1	6M
	b	What are the problems associated with the laws in engineering?	CO3	L1	6M
		UNIT-IV			
7	a	Outline safety. Enumerate criteria for ensuring safe design.	CO 4	L2	6M
	b	Define risk. What are the factors influencing risk?	CO4	L2	6M
_		OR	~~ ·		
8	a	What are the benefits of Intellectual property rights?	CO4	L2	6M
	b	Explain in brief about Professional and Employee rights.	CO 4	L2	6M
•		UNIT-V	005	¥ 4	
9		Who are the consultants? List out the areas where the consultants works.	CO5	L1	6M
	D	List out various conflicts faced by Managers and also Enlist the principles used by the managers to resolve them	CO5	L1	6M
		principles used by the managers to resolve them. OR			
10	a	Explain the duties of engineers as expert witnesses.	CO5	L1	6M
		Explain the role of engineers as advisors in planning and policy making.	CO5	L1	6M
		*** END ***			

O.P.Code:	20EC0405
------------------	----------

R20

H.T.No.

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)	':: PUT	TUR	
	В.	Tech. II Year I Semester Supplementary Examinations Ju ANALOG COMMUNICATIONS	ne/Ju	ly-20	25
Tir	ne	(Electronics & Communications Engineering) (Answer all Five Units 5 x 12 = 60 Marks)	Max.	Mark	s: 60
1	a	Define Amplitude Modulation. Derive expression for AM wave and sketch its frequency spectrum.	CO 1	L1	8M
	b	Determine the Modulation index & Bandwidth of AM OR	CO 1	L2	4M
2		Illustrate the Amplitude modulation for single tone information modulating signal 10 $sin (2\pi \times 103t)$ is used to modulate a carrier signal 20 $sin (2\pi \times 104t)$. Compute the modulation index, % of modulation index, frequency of sideband components and their amplitudes. What will be the bandwidth of modulated signal?	CO2 CO3	L2 L3	6M 6M
3	a	Explain the functionality of Ring modulator for generation of DSB-SC wave.	CO2	L2	8M
	b	Calculate the Transmission bandwidth of DSB-SC wave & power saving.	CO3	L3	4 M
4	a b	What are the advantages and disadvantages of SSB-SC signal? The power of an SSB transmission is 10kW. This transmission is to be replaced by a standard AM signal with the same power content. Calculate the power content of the carrier and each of the sidebands when the percentage modulation is 80%.	CO2 CO2	L1 L4	6M 6M
5	a b	Explain the working principle of Varactor Diode Modulator. Explain the block diagram of indirect method in FM generation.	CO4 CO4	L2 L5	6M 6M
6	a b	OR Explain and draw the block diagram of FM transmitter. A single-tone FM is represented by the voltage equation as: $v(t)=12\cos(6\times10^{6}t+5\sin1250t)$. Determine the following: (i) Carrier frequency (ii) Modulating frequency (iii) Modulation index (iv) What power will this FM wave dissipate in 10Ω resistors?	CO2 CO3	L2 L4	6M 6M
7	a b	What are the advantages & disadvantages of super heterodyning? For a broadcast Super-heterodyne AM receiver having no RF amplifier, the loaded Quality factor of the antenna coupling circuit is 100. Now, if the intermediate frequency is 455kHz, determine the image frequency and its rejection ratio at an incoming frequency of 1000kHz. OR	CO4	L1 L4	5M 7M
8		Derive the expression for figure of merit of AM (DSB-FC) system.	CO5	L3	12M

UNIT-V

9 With a neat sketch, explain the modulation & demodulation of Pulse CO3 L2 12M Duration Modulation.

OR

- 10 a Explain about information content of message and information rate. CO6 L5 6M
 - **b** A source produces one of four possible symbols during each interval **CO6 L4 6M** having probabilities P(x1) = 1/2, P(x2) = 1/4, P(x3) = P(x4) = 1/8. Obtain the information content of each of these symbols.

Time: 3 Hours

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations June/July-2025 KINEMATICS OF MACHINERY

(Mechanical Engineering)

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1 Explain the inversions of double slider crank chain with neat sketch and list CO1 L2 12M out the practical applications of inversions.

OR

- 2 a Explain the working of beam engine with neat sketchCO1L24M
 - b Explain the working principle of quick return mechanisms and also CO1 L2 8M describe the working of Oscillating cylinder engine with neat sketch.

UNIT-II

3 Sketch and Describe the Scott-Russell and Robert's straight-line motion CO2 L1 12M mechanisms.

OR

- 4 a Differentiate between the Davis and Ackerman's steering mechanism. CO2 L4 6M
 - b List out the merits and demerits of Davis steering gear mechanism. CO2 L1 6M

UNIT-III

An engine mechanism is shown in Fig. 8.5. The crank CB = 100 mm and CO3 L1 12M the connecting rod BA = 300 mm with centre of gravity G, 100 mm from B. In the position shown, the crankshaft has a speed of 75 rad/s and an angular acceleration of 1200 rad/s2. Find: 1. Velocity of G and angular velocity of AB, and 2. acceleration of G and angular acceleration of AB

OR

6 a What are the various methods used for finding out acceleration of CO3 L1 6M mechanism? Explain one of them.

b How the Velocity of a Point on a Link can find by Relative Velocity CO3 L1 6M Method.

UNIT-IV

- 7 a Construct the displacement, velocity and acceleration diagrams for a CO4 L5 6M follower when it moves with simple harmonic motion.
 - b Construct the displacement, velocity and acceleration diagrams for a CO4 L5 6M follower when it moves with uniform Acceleration and retardation.

OR

8 Design a cam for operating the exhaust valve of an oil engine. It is required CO4 L5 12M to give equal uniform acceleration and retardation during opening and closing of the valve each of which corresponds to 60° of cam rotation. The valve must remain in the fully open position for 20° of cam rotation. The lift of the valve is 37.5 mm and the least radius of the cam is 40 mm. The follower is provided with a roller of radius 20 mm and its line of stroke passes through the axis of the cam.

UNIT-V

9	a	What do you understand by the term 'interference' as applied to gears?	CO5	L1	6M
	b	Define the following terms relates to transmission of motion	CO5	L1	6M
		(i) Gear tooth contact ratio (ii) Condition for constant velocity ratio			
		OR			

10 Explain briefly the differences between simple, compound, and epicyclic CO5 L2 12M gear trains. What are the special advantages of epicyclic gear trains?

R20

H.T.N	0
-------	---

CO1

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) 3.Tech. II Year I Semester Supplementary Examinations, June / July 2005

B.Tech. II Year I Semester Supplementary Examinations June/July-2025 MECHANICS OF SOLIDS

(Common to ME & AGE)

Time: 3 Hours

(Answer all Five Units $5 \times 12 = 60$ Marks)

Max. Marks: 60

L1

6M

UNIT-I

1 a Define stress and strain. Explain different types of stresses and strains. CO1 L1 6M

b Draw and explain Stress-strain curve for a mild steel bar.

OR

2

A brass bar, having cross-sectional area of 1000 mm^2 , is subjected to CO1 L3 12M axial forces as shown in figure. Find the total elongation of the bar. Take E= $1.05 \times 10^5 \text{ N/mm}^2$.

UNIT-II

3 Draw the shear force and bending moment diagram for a simply CO2 L3 12M supported beam of length 9m and carrying a uniformly distributed load of 10 KN/M for a distance of 6 m from the left end. Also calculate the maximum bending moment in the section.

OR

4 A square beam 20 mm x 20 mm in section and 2 m long is supported at CO2 L3 12M the ends. The beam fails when a point load of 400 N is applied at the centre of the beam. What uniformly distributed load per metre length will break a cantilever of the same material 40 mm wide, 60 mm deep and 3 m long?

UNIT-III

5 A timber beam of rectangular section is simply supported at the ends CO3 L3 12M and carries a point load at the centre of the beam. The maximum bending stress is 12 N/mm² and maximum shearing stress is 1 N/mm², find the ratio of the span to the depth.

a State the difference between twisting moment and bending moment. CO3 L1 4M
b A solid steel shaft has to transmit 75 KW at 200 rpm. Taking allowable CO3 L3 8M shear stress as 70 N/mm², find suitable diameter for the shaft, if the maximum torque transmitted at each revolution exceeds the mean by 30%.

UNIT-IV

A beam of uniform rectangular section 200 mm wide and 300 mm CO4 deep is simply supported at its ends. It carries a uniformly distributed load of 9 KN/m run over the entire span of 5 m. If the value of E for the beam material is 1×10^4 N/mm², find:

(i) The slope at the supports and (ii) Maximum deflection.

OR

Determine: (i) slope at the left support, (ii) deflection under the load and (iii) maximum deflection of a simply supported beam of length 5 m, which is carrying a point load of 5 KN at a distance of 3 m from the left end. Take $E= 2 \times 10^5 \text{ N/mm}^2$ and $I=1 \times 10^8 \text{ mm}^4$.

UNIT-V

A cylindrical shell 100mm long 200mm internal diameter having CO6 L4 12M thickness of a metal as 10mm is filled with a fluid at atmospheric pressure. If an additional 200mm³ pumped into the cylinder, Take $E = 2 \times 10^{5} \text{ N/ mm}^{2}$ and Poisson's ratio is 0.3. Find (i) The pressure exerted by the fluid on the cylinder and

(ii)The hoop stress induced.

6

7

8

9

10

OR

Derive an expression for hoop and radial stresses across thickness CO6 L2 12M of the thick cylinder.

*** END ***

12M

12M

L4

L4

CO4

R20

OR

Page 1 of 2

L3

12M

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

H.T.No.

B.Tech. II Year I Semester Supplementary Examinations June/July-2025 STRENGTH OF MATERIALS

Time: 3 Hours

(Civil Engineering)

Max. Marks: 60

6M

- 1 a Derive the relationship between load, shear force, and bending moment CO1 L1 6M for beam.
 - b A 10 m long simply supported beam carries two point loads of 10 kN CO1 L2 and 6 kN at 2 m and 9 m respectively from the left end. It has a uniformly distributed load of 4 kN/m run for the length between 4 m and 7 m from the left hand end. Draw shear force and bending moment diagrams.

2 a List and explain different types of beams based on support conditions.
b A cantilever of 14 m span carries loads of 6 kN, 4 kN, 6 kN and 4 kN at 2 m, 4 m, 7 m and 14 m respectively from the fixed end. It also has a uniformly distributed load of 2 kN/m run for the length between 4 m and 10 m from the fixed end. Draw the shear force and bending moment diagrams.

- 3
- Three beams have the same length, the same allowable stress and the **CO2** same bending moment. The cross-section of the beams, are a square, a rectangle with depth twice the width and a circle as shown in Figure. Find the ratios of weights of the circular and the rectangular beams with respect to the square beam.

Draw the shear stress distribution for an I section which is symmetrical CO2 L3 **12M** about both the axis. The width of flanges being 'B' and web 'b'. The overall depth 'D' and depth of web 'd'

UNIT-III

Derive the relation for a circular shaft when subjected to torsion as CO3 L3 **12M** below:

 $\frac{T}{J} = \frac{\tau}{R} = \frac{C\theta}{L}$ Where T = torque transmitted, J = Polar moment of inertia, τ = Maximum shear stress, $\mathbf{R} = \text{Radius}$ of the shaft, $\mathbf{C} = \text{Polar}$ moment of inertia, Θ = Ange of twist, and L = Length of the shaft.

An open coil helical string made of 10 mm diameter wire and mean CO3 6 L3 **12M** diameter of 100 mm has 12 coils, angle of helix being 15⁰. Determine the axial deflection and the intensities of bending and shear stresses under an axial load of 500 N. Take C as 80 GPa and E as 200 GPa.

UNIT-IV

7 A beam AB of span 8 m is simply supported at the ends A and B and is **CO4 L4 12M** loaded as shown in Figure. If $E = 200 \times 10^6 \text{ kN/m}^2$ and $I = 120 \times 10^{-6} \text{ m}^4$ determine:

(i)Deflection at the mid span (ii) Maximum deflection (iii) Slope at the end A.

OR

State the assumptions and derive the equation

4

5

8

 $M = EI \; \frac{d^2 y}{dx^2}.$

UNIT-V 9 **a** What are the assumptions made in Euler's theory? **CO5** L2 **2M CO5 b** Find the ratio of buckling strength of a solid column to that of a hollow L3 **10M** column of the same material and having the same cross -sectional area. The internal diameter of the hollow column is half of its external diameter. Both the columns are hinged and the same length.

OR

- 10 a A rectangular section of width b and thickness d, find out limit of CO5 L2 **6M** eccentricity and draw the kernel.
 - **b** In a tension specimen 13 mm in diameter the line of pull is parallel to CO5 L3 **6M** the axis of the specimen but is displaced from it. Determine the distance of the line of pull from the axis, when the maximum stress is 15% greater than the mean stress on a section normal to the axis.

*** END ***

CO4

L3

12M

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations June/July-2025 **ELECTRONIC DEVICES AND CIRCUITS**

(Electronics and Communications Engineering)

Time: 3 Hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- a Derive the expression for forward dynamic resistance of a PN CO2 **L**3 **7**M 1 junction diode.
 - b Calculate the forward resistance of a PN Junction Diode when the CO2 **L**4 **5**M forward current is 5mA at T = 300 K. Assume Silicon diode.

OR

a Derive the expression for transition capacitance of a PN JunctionDiode. **CO2 L3** 2 **6M** b Explain about a Combination Clipper and sketch its input-output CO4 **L2 6M** waveforms.

UNIT-II

- a Draw the circuit diagram of a Full Wave Rectifier and with the help of CO4 3 L1 **6M** waveforms describe its operation.
 - b A Full Wave Rectifier circuit is fed from a transformer having a **CO5 L4 6M** center-tapped secondary winding. The RMS voltage from either end of secondary to center tap is 30V. If the diode forward resistance is 2Ω and that of the half secondary is 8Ω , for a load of 1 K Ω . Calculate DC delivered to the load, efficiency of rectification and power Transformer Utilization Factor (TUF) of secondary.

OR

- **a** Demonstrate the working principle of LC filter with neat circuit diagram **CO3** 4 **L4 6M** and derive the expression for its ripple factor. List its advantages and disadvantages.
 - **b** With neat diagram, explain the working of LED and list its advantages CO3 **L3 6M** and applications.

UNIT-III

- 5 a With neat diagram, explain the Input and Output characteristics of a BJT **CO3** L2 **6M** in CB Configuration. Explain Early effect.
 - **b** Explain the construction and working principle of N-ChannelJFET. **CO3** L2 **6M**

OR

- **CO2 a** List the differences between Depletion and EnhancementMOSFETs. L2 **6M** 6
 - **b** Explain the operation of N-Channel depletion type MOSFET with **CO3** L2 **6M** diagram.

UNIT-IV

- a List the different types of Biasing a Transistor and explain the Fixed CO3 L2 **6M** 7 Bias of a Transistor.
 - **b** Determine the expression for stability factor, S for fixed bias circuit **CO5 L3 6M** and list its disadvantages.

OR8 a Define and Explain Thermal Runaway and Thermal Resistance.CO2L26Mb Determine the Q-point for the circuit shown in the FigureCO6L36M

9 a What is a small signal low frequency transistor amplifier?
b Define h-parameters and draw the generalized h-parameter model of a Transistor. Why hybrid model is used for the analysis of BJT amplifier at low frequencies?
CO2 L1 6M CO2 L2 6M

OR

- 10 a For a CB transistor, amplifier driven by a voltage source of internal CO6 L3 6M resistance $R_s = 1200\Omega$, the load Impedance of $R_L = 1000\Omega$. The h-parameters are $h_{ib} = 22\Omega$, $h_{rb} = 3 \times 10^{-4}$, $h_{fb} = -0.98$, $h_{ob} = 0.5 \mu A/V$. Find current gain, voltage gain, input impedance and output impedance using approximate analysis.
 - **b** Analyze CE amplifier with emitter resistance using simplified CO5 L4 6M h-parameter model.

Time: 3 Hours

R20

H.T.No

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations June/July-2025 FLUID MECHANICS & HYDRAULICS MACHINERY

(Mechanical Engineering)

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- 1 a Define surface tension. Derive the expression for surface tension on CO1 L1 8M liquid droplet.
 - b The surface tension of water in contact with air at 200 C is 0.072 N/m. CO1 L3 4M
 The pressure inside of water droplet of water is to be 0.02 N/cm2 greater
 than the outside pressure. Calculate the diameter of the droplet of water.

OR

- 2 a Explain the terms of compressibility and bulk modulus. CO1 L2 6M
 - b Obtain an expression for capillary rise of a liquid. CO1 L2 6M

UNIT-II

3 a The diameters of a pipe at the sections 1 & 2 are 10 cm and 15 cm CO2 L3 6M respectively. Find the discharge through the pipe if the velocity of water flowing through the pipe at section 1 is 5 m/s. Determine also the velocity at section 2.

b Define the following terms: Velocity potential function, stream function CO2 L1 6M and flow net.

OR

- 4 Derive Bernoulli's equation and state assumptions. CO2 L3 12M
- 5 List out minor losses in pipe flow and write the equations for all minor CO3 L1 12M losses.

OR

6 a Recall the concept of pipes in series and parallel.
b Find the head lost due to friction in a pipe of diameter 300 mm and CO3 L3 6M length 50m, through which water is flowing at a velocity of 3 m/s using Darcy formula.

UNIT-IV

- 7 a Determine the expression for force and the efficiency by the jet when it CO4 L3 6M strikes at the centre of moving curved plate?
 - b A 7.5 cm diameter jet having a velocity of 30 m/s strikes a flat plate, the CO4 L3 6M normal of which is inclined at 45° to the axis of the jet. Calculate the normal pressure on the plate when (i) the plate is stationary, and (ii) when the plate is moving with a velocity of 15 m/s and away from the jet.

OR

8 A jet of water having a velocity of 40 m/s strikes a curved vane, which is CO4 L4 12M moving with a velocity of 20 m/s. The jet makes an angle of 30° with the direction of motion of vane at inlet and leaves at an angle of 90° to the direction of the motion of the vane at outlet. Draw the velocity triangles at inlet and outlet and determine the vane angles at inlet and outlet so that the water enters and leaves the vane without shock.

UNIT-V

9 Explain Definitions of Heads and Efficiencies of a centrifugal pump. CO5 L2 12M

OR

10 The following data is given for the Francis turbine. Net head H = 60 m, CO5 L3 12M Speed N = 700 r.p.m., Shaft Power = 294.3 kW, $\eta o = 84 \% \eta h = 93 \%$, flow ratio = 0.2, breadth ratio n = 0.1, outer diameter of the runner = 2 X inner diameter of the runner. The thickness of vane occupies 5% of circumferential area of the runner, velocity of flow is constant at inlet and outlet and discharge is radially at outlet.

Determine: (i) Guide blade angle, (ii) Runner vane angles at inlet and outlet, (iii) Diameters of runner at inlet and outlet, and (iv) Width of wheel at inlet.

(4)

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR
(AUTONMOUS)B.Tech. II Year I Semester Supplementary Examinations June/July-2025
NUMERICAL METHODS AND TRANSPORMS
(Electronics and Communications Engineering)Time: 3 HoursMax. Marks: 60
Answer all Five UnitsState Newton-Raphson formula for solution of polynomial and
(
$$\vartheta$$
) Find the square root of 48. (ϑ) Find the reciprocal of 12.
ORORColspan="2">OI2a From the following table, the values of x and y = COS x. InterpolateCOIL56M
values of y when $x = 0.12$. OR COIL36M $f(25) = 0.2707, f(30) = 0.3027, f(35) = 0.3386, f(40) = 0.3794.$ $OIII - III$ GN3Solve $y' = x^2 - y$ using R –K method of 4^{th} order, given that $y(0) = 1$.CO3L312MFind $y(0.1)$ and $y(0.2)$.ORCO3L56MCO3L56MCO3L56MCO3L56MORCO3L56MORCO3L56MORCO3L56MORCO4L36MORCO3L56MCO3L56MORCO3L56MORCO4L36MOR

UNIT-IV

7	a	Solve the D.E. $y'' + 2y' + y = 3t e^{-t}$ using Laplace Transform given that	CO5	L3	6M	
		y(0) = 4, y'(0) = 0.				
	b	Obtain the Fourier series expansion of $f(x) = (\pi - x)^2$ in $[0, 2\pi]$.	CO5	L3	6M	
		Hence show that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} - \dots - = \frac{\pi^2}{6}$				
		OR				
8	a	Expand $f(x) = x $ as a Fourier series in the interval (-2, 2).	CO5	L2	6M	
	b	Find the half-range cosine series expansion of $f(x) = x^2 \text{ in } 0 < x < 4$.	CO5	L1	6M	
		UNIT-V				
			CO 6	L1	6M	
9	•	Find the Fourier cosine transform of $f(x) = \begin{cases} 2-x, & 1 < x < 2 \end{cases}$				
,	a	Find the Fourier cosine transform of $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$				
		Prove that $F_s[x f(x)] = -\frac{d}{dp}[F_c(p)]$	CO6	L5	6M	
		OR				
10		Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, & x < a \\ 0, & x > a > 0 \end{cases}$ Hence show	CO6	L1	12M	
		that $\int_{0}^{\infty} \frac{\sin x - x \cos x}{x^3} dx = \frac{\pi}{4}.$				

*** END ***

9 P

4

Q.P.Code: 20HS0832

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

R20

H.T.No.

B.Tech. II Year I Semester Supplementary Examinations June/July-2025 PROBABILITY, NUMERICAL METHODS AND TRANSFORMS

(Electrical & Electronics Engineering)

Time: 3 Hours

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- 1 a The probability that John hits a target is $\frac{1}{2}$. He fires 6 times, find the CO1 L1 6M probability that he hits the target (i) Exactly 2 times (ii) At lest one
 - b Average number of accidents on any day on a national high way is 1.8. CO1 L1 6M
 Determine the probability that the number of accidents are (I) at least
 one (ii) at most one

OR

2 Of the three men, the chances that a politician, a business man or an CO1 L3 12M academician will be appointed as a vice-chancellor of university are 0.5, 0.3, 0,2, respectively. Probability that research is promoted by these persons if they are appointed as VC are 0.3, 0.7, 0.8, respectively.
(i) Determine the probability that research is promoted
(ii) If research is promoted, what is the probability that V.C is an academician?

UNIT-II

3	a	Find the first approximation of the root of the equation x -cos $x=0$ by	CO2	L3	6M
		Bisection method			
	b	Find the first approximation of the root of the equation $xe^x = 2$ by	CO2	L3	6M
		Regula-Falsi method			

OR

4 Consider the following data

X	1	1.4	1.8	2.2
f(x)	3.49	4.82	5.96	6.5

Find the value of f(1.2) and f(2.0) using Newton's forward and backward interpolation formulas.

UNIT-III

5

Using modified Euler's method, find y(0.2) and y(0.4) given CO3 L3 $y' = y + e^x$, y(0) = 0.

12M

CO2

L3

12M

Max. Marks: 60

	OR			
6	Apply Runge-Kutta method to evaluate $y(0.2)$ and $y(0.4)$ given that	CO3	L3	12M
÷	$y' = 1 + y^2, y(0) = 0.$			
<i>c</i>	UNIT-IV			
7	Find the Laplace transform for $f(t) = \left(\sqrt{t} - \frac{1}{\sqrt{t}}\right)^3$	CO4	L3	6M
	b Find the Inverse Laplace transform of $\frac{s+3}{s^2-4s+13}$	CO 4	L1	6M
	OR			
8	If $L{f(t)} = \overline{f}(s)$ then prove that $L{t^n} f(t) = (-1)^n \frac{d^n}{ds^n} [\overline{f}(s)]$	CO 4	L3	`12M
	UNIT-V			
9	Solve $\frac{d^2x}{dt^2} + 9x = \cos 2t$ if $x(0) = 1, x(\frac{\pi}{2}) = -1$	CO5	L3	12M
	OR			24
10	Solve $y_{n+2} - 2y_{n+1} - y_n = 0$, $y_1 = 0$, $y_2 = 1$	CO5	L3	12M
	*** END ***			

OR

4 6

ι. Έ

 ~ 2

R20

H.T.N	0.
-------	----

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations June/July-2025 NUMERICAL METHODS, PROBABILITY & STATISTICS

(Mechanical Engineering)

Time	• 3	Hours		Max	Marks:	60
Ime	. 0	(Answer all Five Units $5 \times 12 = 6$	0 Marks)	Man.	Mai A5	00
		UNIT-I				
1	a	State Newton – Raphson formula for solution of polyn	omial and	CO 1	L1	3M
	b	transcendental equations. Estimate a real root of the equation $xe^x - \cos x = 0$ by using	ng Newton	CO1	L5	9M
	D	- Raphson method.		001	20	
		OR				
2	a	Apply Newton's forward interpolation formula and the given of values	ven table	CO1	L3	6M
		1				
		x 1.1 1.3 1.5 1.7 1.9 f(x) 0.21 0.69 1.25 1.89 2.61	-			
		Obtain the value of $f(x)$ when $x=1.4$.				
	b	Use Newton's backward interpolation formula to find f(3	2), given	CO1	L3	6M
		f(25) = 0.2707, f(30) = 0.3027, f(35) = 0.3386, f(40) = 0.37	'94.			
•		UNIT-II		CO3	1.2	
3	a	Solve $y^1 = x + y$, given y (1) = 0 find y(1.1) and y(1.2) by T	aylor's	CO3	L3	6M
	h	series method.		CO3	L3	6M
	b	Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1)=2 and find y	(2).	COS	113	UIVI
4	-	OR OR		CO5	L5	10M
4	ΕV	valuate $\int_0^1 \frac{1}{1+x} dx$ by		005	15	10101
		 (i) by Trapezoidal rule and Simpson's 1/3 rule. (ii) Using Simpson's 3/8 rule and compare the result 	with			
		actual value.				
		UNIT-III				
5	a	Define Measures of Central tendency.		CO4	L1	3M
	b	The weights of 6 competitors in a game are given below 58,62,56,63,55,61 kgs. Find the median of the following	values	CO4	L1	4M
	c	Find arithmetic mean to the following data.	, and ep.	CO 4	L1	5M
		Marks 10-20 20-30 30-40 40-50	50-60			
		frequency 5 8 25 22	10			
		OR				
6	a	State Baye's theorem.		CO4	L1	3M
	b	In a certain college 25% of boys and 10% of girls ar mathematics. The girls Constitute 60% of the student box		CO4	L3	9M
		i) What is the probability that mathematics is being stu-	•			
		(ii) If a student is selected at random and is found to b				
		mathematics, find the probability that the student is a girl?)			
		(iii) a boy?				

UNIT-IV

CO5

L5

12M

7 A random variable X has the following probability function.

Х	0	1	2	3	4	5	6	7
P(x)	0	K	2K	2K	3K	K ²	$2K^2$	7K ² +K

Determine (i) K (ii) Mean iii) variance. (iv) if $P(X \le K) > 1/2$, find the Minimum value of K.

8 For the continuous probability function $f(x) = \{kx^2e^x, when x \ge 0 \text{ CO5 L1 12M} \\ 0 ; elsewhere$

Determine i) k ii) Mean iii) Variance.

- UNIT-V
- 9 Out of 800 families with 5 children each, how many would you expect CO5 L2
 12M to have (i) 3 boys (ii) 5 girls (iii) either 2 or 3boys iv) At least one boy.
 - OR
- 10 Ten competitors in a musical test were ranked by the three judges A,B CO6 L3 12M and C in the following order:

Ranks by A	1	6	5	10	3	2	4	9	7	8
Ranks by B	3	5	8	4	7	10	2	1	6	9
Ranks by C	6	4	9	8	1	2	3	10	5	7

Using rank Correlation coefficient method, discuss which pair of judges has the nearest approach to common likings in music.

O.P.Code: 20HS0845

.....

H.T.No	•
--------	---

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)											
	B.Tech. II Year I Semester Supplementary Examinations June/July-2025 MATHEMATICAL AND STATISTICAL METHODS											
		(Common to CSM, CIC, CAI, CAD & CCC)										
Tir	ne	: 3 Hours	Max.	Mark	s: 60							
		(Answer all Five Units $5 \times 12 = 60$ Marks)										
1	a	n	CO1	L5	8M							
		Prove that sum of the first 'n' Fibonacci number is $\sum_{k=1}^{n} F_k = F_{n+2} - 1$ and										
		use Binet's formula to find 14 th term of Fibonacci sequence.										
	b	Find the gcd and lcm of 504 and 540.	CO1	L3	4M							
		OR			11.1							
2	a	Find the general solution of $63x - 23y = -7$. Using Euclidean algorithm.	CO1	L3	6M							
	b		CO1	L4	6M							
		12x+13y = 14 is solvable. Write general solution if solvable	002	2.	UIVE							
		UNIT-II										
3	9	Solve system of linear equations $3x + 4y \equiv 5 \pmod{13}$,	CO2	L3	6M							
5	a		002	Ц3	UWI							
		$2x + 5y \equiv 7 \pmod{13}$.	GOA									
	b	Solve system of linear equations $3x+13y \equiv 8 \pmod{55}$,	CO2	L3	6M							
		$5x + 21y \equiv 34 \pmod{55}$.										
		OR										
4	a	Find $\sigma(200)$ and $\tau(200)$, where $\sigma(n)$ denotes sum of the divisors and	CO2	L3	6M							
		$\tau(n)$ denotes number of divisors.										
	b	If $\phi(n)$ denotes the number of positive integers less than or equal to n,	CO2	L3	6M							
		then find (i) $\phi(28)$ (ii) $\phi(1000)$.			-							
		UNIT-III										
5	a	Let $X_1, X_2, X_3, \dots, X_n$ be a random sample from the Poisson population	CO3	L1	6M							
		$e^{-\lambda}\lambda^r$ —										
		with probability mass function $p(r) = \frac{e^{-\lambda}\lambda^r}{r!}$. Show that \overline{X} is the most										
		efficient estimator of θ .										
	b	Show that ns ² /n-1 is a consistent estimator of σ^2 .	CO3	L1	6M							
		OR										
6	a	Find the Maximum Likelihood estimator of the parameter θ of the	CO 4	L3	6M							
		$1 \alpha = \frac{-x}{4}$										
		distribution given by $f(x,\theta) = \frac{1}{\alpha! \theta^{\alpha+1}} x^{\alpha} e^{\frac{-x}{\theta}}, 0 < x < \infty$ Where α is										
		known, based on a sample of size n.										
	b	Obtain the maximum likelihood estimation of θ in	CO 4	L4	6M							
		$f(x,\theta) = (1+\theta) x^{\theta}, \ 0 < x < 1$ based on an independent sample of size n.										
×.		Examine whether this estimate is sufficient for θ .										

UNIT-IV

CO5

CO6

L1

L3

4M

12M

L1

6M

- 7 a Define Stochastic process and Markov process.
 - b Suppose a communication system transmits the digits 0 and 1 through CO5 L1 6M many stages. At each state the probability that the same digit will be received by the next stage as transmitted, is 0.75. What is the probability that a 0 is entered at the first stage is received as a 0 in the 5th stage?

OR

- 8 Let $\{X_n : n = 1, 2, 3...\}$ be a Markov chain with state space $S = \{0, 1, 2\}$ and CO5 L2 12M
 - one step transition probability matrix $P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$ (i) Is the chain

ergodic? Explain (ii) Find the invariant probabilities.

UNIT-V

- 9 a The stenographic is attached to 5 officers or whom she performs CO6 L3 8M stenographic work. She gets call from the officers at the rate of 4 per hour and takes on the average 10 min to attend to each call. If arrival rate is Poisson and service time exponential find (a) the average number of waiting calls (b) the average waiting time for an arriving call and(c) the average time an arriving call spends in the system.
 - **b** Define Birth and Death process.

OR

10 Arrival rate of telephone calls at a telephone booth are according to Poisson CO6 distribution with an average tome of 12 min between two consecutive call arrivals. The length of telephone calls is assumed to be exponential distributed with mean 4 minutes. Find (i) Find the average queue length that forms from time to time.

(ii) Probability that a caller arriving at the booth will have to wait. (iii) What is the probability that an arrival will have to wait for more than 15 minutes before the phone is free. (iv)Find the fraction of a day that the phone will be in use.